Send to

Choose Destination
Biochemistry. 2002 Jun 18;41(24):7586-96.

Electrostatic interactions in ubiquitin: stabilization of carboxylates by lysine amino groups.

Author information

Department of Biochemistry, University of Iowa College of Medicine, Iowa City, Iowa 52242, USA.


To explore electrostatic interactions in ubiquitin, pK(a) values have been determined by NMR for all 12 carboxyl groups in wild-type ubiquitin and in variants where single lysines have been replaced by neutral residues. Aspartate pK(a) values in ubiquitin range from 3.1 to 3.8 and are generally less than model compound values. Most aspartate pK(a) values are within 0.2 pH unit of those predicted with a simple Tanford-Kirkwood model. Glutamate pK(a) values range from 3.8 to 4.5, close to model compound values and differing by 0.1-0.8 pH unit from calculated values. To determine the role of positive charges in modulating carboxyl pK(a) values, we mutated lysines at positions 11, 29, and 33 to glutamine and threonine. NMR studies with these six single-site mutants reveal significant interactions of Lys 11 and Lys 29 with Glu 34 and Asp 21, respectively: pK(a) values for Glu 34 and Asp 21 increase by approximately 0.5-0.8 pH unit, similar to predicted values, when the lysines are replaced by neutral residues. In contrast, the predicted interaction between Lys 33 and Glu 34 is not observed experimentally. In some instances, substitution of lysine by glutamine and threonine did not lead to the same changes in carboxyl pK(a) values. These may reflect new short-range interactions between the mutated residues and the carboxyl groups. Carboxyl pK(a) shifts > 0.5 pH unit result from mutations at groups that are <5 A from the carboxyl group. No interactions are observed at >10 A.

[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for American Chemical Society
Loading ...
Support Center