Format

Send to

Choose Destination
J Mol Biol. 2002 Apr 26;318(2):595-608.

Enzyme function less conserved than anticipated.

Author information

1
CUBIC, Department of Biochemistry and Molecular Biophysics, Columbia University, 650 West 168th Street BB217, New York, NY 10032, USA. rost@columbia.edu

Abstract

The level of sequence similarity that implies similarity in protein structure is well established. Recently, many groups proposed thresholds for similarity in sequence implying similarity in enzymatic function. All previous results suggest the strong conservation of enzymatic function above levels of 50% pairwise sequence identity. Here, I argue that all groups substantially overestimated the conservation of enzyme function because their data sets were either too biased, or too small. An unbiased analysis suggested that less than 30% of the pair fragments above 50% sequence identity have entirely identical EC numbers. Another surprising finding was that even BLAST E-values below 10(-50) did not suffice to automatically transfer enzyme function without errors. As expected, most misclassifications originated from similarities in relatively short regions and/or from transferring annotations for different domains. Both problems cannot be corrected easily by adjusting the thresholds for automatic transfer of genome annotations. A score relating sequence identity to alignment length (distance from HSSP-threshold) outperformed statistical BLAST scores for high sequence similarity. In particular, the distance score allowed error-free transfer of enzyme function for the 10% most similar enzyme pairs. The results illustrated how difficult it is to assess the conservation of protein function and to guarantee error-free genome annotations, in general: sets with millions of pair comparisons might not suffice to arrive at statistically significant conclusions. In practice, the revised detailed estimates for the sequence conservation of enzyme function may provide important benchmarks for everyday sequence analysis and for more cautious automatic genome annotations.

PMID:
12051862
DOI:
10.1016/S0022-2836(02)00016-5
[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Elsevier Science
Loading ...
Support Center