Send to

Choose Destination
See comment in PubMed Commons below
J Biol Chem. 2002 Aug 9;277(32):28810-4. Epub 2002 Jun 5.

Identification of Saccharomyces cerevisiae isoleucyl-tRNA synthetase as a target of the G1-specific inhibitor Reveromycin A.

Author information

  • 1Department of Molecular Biotechnology, Graduate School of Advanced Sciences of Matter, Hiroshima University, Higashi-Hiroshima 739-8530, Japan.


To dissect the action mechanism of reveromycin A (RM-A), a G(1)-specific inhibitor, a Saccharomyces cerevisiae dominant mutant specifically resistant to RM-A, was isolated from a strain in which the genes implicated in nonspecific multidrug resistance had been deleted. The mutant gene (YRR2-1) responsible for the resistance was identified as an allele of the ILS1 gene encoding tRNA(Ile) synthetase (IleRS). The activity of IleRS, but not several other aminoacyl-tRNA synthetases examined in wild type cell extract, was highly sensitive to RM-A (IC(50) = 8 ng/ml). The IleRS activity of the YRR2-1 mutant was 4-fold more resistant to the inhibitor compared with that of wild type. The mutation IleRS(N660D), near the KMSKS consensus sequence commonly found in the class I aminoacyl transferases, was found to be responsible for RM-A resistance. Moreover, overexpression of the ILS1 gene from a high-copy plasmid conferred RM-A resistance. These results indicated that IleRS is a target of RM-A in vivo. A defect of the GCN2 gene led to decreased RM-A resistance. IleRS inhibition by RM-A led to transcriptional activation of the ILS1 gene via the Gcn2-Gcn4 general amino acid control pathway, and this autoregulation seemed to contribute to RM-A resistance.

[PubMed - indexed for MEDLINE]
Free full text
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire
    Loading ...
    Support Center