Send to

Choose Destination
See comment in PubMed Commons below
Mech Dev. 2002 Jul;115(1-2):161-6.

SM22beta encodes a lineage-restricted cytoskeletal protein with a unique developmentally regulated pattern of expression.

Author information

Department of Medicine, University of Pennsylvania, Philadelphia, PA 19104-4283, USA.


Cytoskeletal proteins play important roles in regulating cellular morphology, cytokinesis and intracellular signaling. In this report, we describe a developmentally regulated gene encoding a novel cell lineage-restricted cytoskeletal protein, designated SM22beta. SM22beta shares high-grade sequence identity with the smooth muscle cell (SMC)-specific protein, SM22alpha, the neuron-specific protein, NP25, and the Drosophila melanogaster flight muscle-specific protein, mp20. The mouse SM22beta cDNA encodes a 199-amino acid polypeptide that contains a single conserved calponin-like repeat domain. During mouse embryonic development, the SM22beta gene is expressed in a temporally and spatially regulated pattern in the tunica media of arteries and veins, endocardium and compact layer of the myocardium, bronchial epithelium and mesenchyme of the lung, gastrointestinal epithelium and cartilaginous primordia. During postnatal development, SM22beta is co-expressed with SM22alpha in arterial and venous SMCs. In addition, SM22beta is expressed at high levels in the bronchial epithelium and lung mesenchyme, gastrointestinal epithelial cells and in the cartilagenous and periosteal layer of bones. Three-dimensional deconvolution microscopic analyses of A7r5 SMCs revealed that SM22beta co-localizes with SM22alpha to cytoskeletal actin filaments. Taken together, these data demonstrate that SM22beta is a novel actin-associated protein with a unique cell lineage-restricted pattern of expression.

[Indexed for MEDLINE]
Free full text
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Elsevier Science
    Loading ...
    Support Center