Format

Send to

Choose Destination
Rheumatology (Oxford). 2002 Jun;41(6):658-65.

Homocysteine and folate status in methotrexate-treated patients with rheumatoid arthritis.

Author information

1
Department of Rheumatology, University Medical Center St Radboud, Nijmegen, The Netherlands.

Abstract

OBJECTIVE:

To study (i) the influence of methotrexate (MTX) therapy on homocysteine and folate metabolism in patients with rheumatoid arthritis (RA), (ii) the influence of the C677T mutation in the methylenetetrahydrofolate reductase gene (MTHFR) on the change in plasma homocysteine levels during MTX treatment, and (iii) the interference of folate and homocysteine metabolism with the efficacy and toxicity of treatment with MTX.

METHODS:

The 113 patients enrolled in this study were participating in a 48-week, multicentre, double-blind, placebo-controlled study comparing the efficacy and toxicity of MTX treatment with and without folic or folinic acid supplementation. The MTX dose was 7.5 mg/week initially and increased to a maximum of 25 mg/week if necessary. Concentrations of total folate, 5-methyl tetrahydrofolate (in serum and in erythrocytes) and of homocysteine, cysteine and cysteine-glycine and the MTHFR genotype were determined before the start of the study, after 6 weeks, and after 48 weeks or on withdrawal from the study. Blood was drawn from fasting patients at a standardized time in the morning, 16 h after intake of MTX. The laboratory results were related to parameters of efficacy and toxicity of MTX treatment.

RESULTS:

Baseline values were distributed equally in the three treatment groups. The mean plasma homocysteine level (normal range 6-15 micromol/l) before the start of MTX was relatively high in all groups: 15.4 micromol/l [95% confidence interval (CI) 13.5 to 17.2] in the MTX plus placebo group (n=39), 14.3 micromol/l (95% CI 12.2 to 16.4) in the MTX plus folic acid group (n=35) and 15.9 micromol/l (95% CI 13.7 to 18.1) in the MTX plus folinic acid group (n=39). After 48 weeks of MTX therapy, the mean homocysteine level showed an increase in the placebo group (+3.6 micromol/l, 95% CI 1.7 to 5.6). In contrast, a decrease was observed in the groups supplemented with folic or folinic acid (folic acid, -2.7 micromol/l, 95% CI -1.4 to -4.0; folinic acid, -1.6 micromol/l, 95% CI -0.1 to -3.0). The differences in the change in plasma homocysteine level between the placebo group and each of the two folate-supplemented groups were statistically significant (P<0.0001), contrary to the difference between the folic and folinic acid groups (P=0.26). Linear regression analysis showed that the change in plasma homocysteine level was statistically significantly associated with folic or folinic acid supplementation (P=0.0001) but not with the presence or absence of the C677T mutation in the MTHFR gene. Homozygous mutants had a higher plasma homocysteine concentration at baseline. No relationship was found between the change in disease activity and the change in homocysteine concentration or the mean homocysteine concentration after 48 weeks of MTX therapy. Toxicity-related discontinuation of MTX treatment was not associated with the change in homocysteine concentration.

CONCLUSIONS:

Low-dose MTX treatment in RA patients leads to an increased plasma homocysteine level. Concomitant folate supplementation with either folic or folinic acid decreases the plasma homocysteine level and consequently protects against potential cardiovascular risks. No relationship was found between the change in homocysteine concentration and the presence or absence of the C677T mutation in the MTHFR gene. Homocysteine metabolism was not associated with efficacy or toxicity of MTX treatment.

PMID:
12048292
DOI:
10.1093/rheumatology/41.6.658
[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Silverchair Information Systems
Loading ...
Support Center