Send to

Choose Destination
Annu Rev Biochem. 2002;71:17-50. Epub 2001 Nov 9.

Error-prone repair DNA polymerases in prokaryotes and eukaryotes.

Author information

Department of Biological Sciences and Chemistry, Hedco Molecular Biology Laboratory, University of Southern California, Los Angeles, California 90089-1340, USA.


DNA repair is crucial to the well-being of all organisms from unicellular life forms to humans. A rich tapestry of mechanistic studies on DNA repair has emerged thanks to the recent discovery of Y-family DNA polymerases. Many Y-family members carry out aberrant DNA synthesis-poor replication accuracy, the favored formation of non-Watson-Crick base pairs, efficient mismatch extension, and most importantly, an ability to replicate through DNA damage. This review is devoted primarily to a discussion of Y-family polymerase members that exhibit error-prone behavior. Roles for these remarkable enzymes occur in widely disparate DNA repair pathways, such as UV-induced mutagenesis, adaptive mutation, avoidance of skin cancer, and induction of somatic cell hypermutation of immunoglobulin genes. Individual polymerases engaged in multiple repair pathways pose challenging questions about their roles in targeting and trafficking. Macromolecular assemblies of replication-repair "factories" could enable a cell to handle the complex logistics governing the rapid migration and exchange of polymerases.

[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Atypon
Loading ...
Support Center