Send to

Choose Destination
Biochemistry. 2002 Jun 11;41(23):7385-90.

Interactions of amyloid beta-protein with various gangliosides in raft-like membranes: importance of GM1 ganglioside-bound form as an endogenous seed for Alzheimer amyloid.

Author information

Department of Energy and Hydrocarbon Chemistry, Graduate School of Engineering, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan.


GM1 ganglioside-bound amyloid beta-protein (GM1-Abeta), found in brains exhibiting early pathological changes of Alzheimer's disease (AD) plaques, has been suggested to accelerate amyloid fibril formation by acting as a seed. We have previously found using dye-labeled Abeta that Abeta recognizes a GM1 cluster, the formation of which is facilitated by cholesterol [Kakio, A., Nishimoto, S., Yanagisawa, K., Kozutsumi, Y., and Matsuzaki, K. (2001) J. Biol. Chem. 276, 24985-24990]. In this study, we investigated the ganglioside species-specificity in its potency to induce a conformational change of Abeta, by which ganglioside-bound Abeta acts as a seed for Abeta fibrillogenesis, using a major ganglioside occurring in brains (GM1, GD1a, GD1b, and GT1b) in raft-like membranes composed of cholesterol and sphingomyelin. Abeta recognized ganglioside clusters, the density of which increased with the number of sialic acid residues. Interestingly, however, mixing of gangliosides inhibited cluster formation. In contrast, the affinities of the protein for the clusters were similar irrespective of lipid composition and of the order of 10(6) M(-)(1) at 37 degrees C. Abeta underwent a conformational transition from an alpha-helix-rich structure to a beta-sheet-rich structure with the increase in protein density on the membrane. Ganglioside-bound Abeta proteins exhibited seeding abilities for amyloid formation. GM1-Abeta exhibited the strongest seeding potential, especially under beta-sheet-forming conditions. This study suggested that lipid composition including gangliosides and cholesterol strictly controls amyloid formation.

[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for American Chemical Society
Loading ...
Support Center