Format

Send to

Choose Destination
Pharmacogenetics. 2002 Jun;12(4):313-20.

Effect of apolipoprotein E, peroxisome proliferator-activated receptor alpha and lipoprotein lipase gene mutations on the ability of fenofibrate to improve lipid profiles and reach clinical guideline targets among hypertriglyceridemic patients.

Author information

1
Community Genomic Medicine Centre, University of Montreal, Chicoutimi Hospital, Québec, Canada.

Abstract

Fenofibrate is a peroxisome proliferator-activated receptor alpha (PPARalpha) agonist which regulates the transcription of genes encoding proteins involved in triglyceride (TG)-rich lipoproteins and lipoprotein lipase (LPL) metabolism. The aim of the present study was to investigate the relation between TG-related parameters considered in different clinical guidelines used in industrialized countries for the management of lipid disorders (namely fasting plasma TG, high density-lipoprotein cholesterol (HDL-C), non-HDL-C concentrations and total-C/HDL-C ratio) and the presence of LPL-null (P207L), LPL-defective (D9N), PPARalpha -L162V, apolipoprotein (apo) E and PPARgamma-P12A gene mutations, in a sample of 292 hypertriglyceridemic subjects treated with fenofibrate for 3 months. Although fenofibrate induced a decrease in plasma TG level and an increase in HDL-C level in all studied genotypes, mutation-specific differences were observed. After adjustment for age, gender, body mass index and the presence of apo E2 genotype, the LPL-P207L mutation was associated with residual post-treatment hypertriglyceridemia [TG > 2.0 mmol/l, odds ratio (OR) = 3.07, P = 0.005] and total-C/HDL-C ratio > 5 (OR = 2.68; P = 0.03). This effect was significantly related to higher plasma TG concentrations at baseline among carriers of a LPL-null mutation. Compared to apo E3 and E4 variants, the apo E2 allele was associated with a better response to fenofibrate on all lipid parameter, especially among PPARalpha -L162V carriers, whereas the simultaneous presence of apo E2 and PPARalpha -L162V tended to improve fenofibrate response among LPL-P207L heterozygotes. Finally, the LPL-D9N and PPARgamma -P12A mutations did not affect fenofibrate lipid-lowering action. This study suggests that frequent genetic variations in genes encoding proteins involved in TG-rich lipoprotein metabolism could modulate the response to fenofibrate treatment, as defined in clinical guidelines.

PMID:
12042669
[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Wolters Kluwer
Loading ...
Support Center