Send to

Choose Destination
See comment in PubMed Commons below
FASEB J. 2002 Jul;16(9):1126-8. Epub 2002 May 21.

EphB ligand, ephrinB2, suppresses the VEGF- and angiopoietin 1-induced Ras/mitogen-activated protein kinase pathway in venous endothelial cells.

Author information

  • 1National Creative Research Initiatives Center for Endothelial Cells and Department of Life Science, Division of Molecular and Life Sciences, Pohang University of Science and Technology, Pohang, 790-784, Republic of Korea.


Interaction between ephrinB2 and EphB4 in endothelial cells at the arterial-venous capillary interface is critical for proper embryonic capillary morphogenesis. However, the intracellular downstream signaling of ephrinB2-EphB in vascular endothelial cells is unknown. This study examined the effect of ephrinB2-induced activation of EphB kinases on vascular endothelial growth factor (VEGF)- and angiopoietin-1 (Ang1)-induced Ras/mitogen-activated protein kinase (MAPK) signaling cascades in human umbilical vein endothelial cells (HUVECs). Reverse transcriptase-polymer chain reaction results showed that HUVECs expressed three kinds of EphB kinases known to bind to ephrinB2: EphB2, EphB3, and EphB4. EphrinB2 not only increased the phosphorylation of EphB2 and EphB4 in a time-dependent manner but also increased recruitment of p120-Ras-GTPase-activating protein (p120-RasGAP) to EphB2 and EphB4. Accordingly, ephrinB2 inhibited VEGF- and Ang1-induced Ras-MAPK activities, whereas ephrinB2 did not alter VEGF-induced Flk phosphorylation or Ang1-induced Tie2 phosphorylation. Furthermore, ephrinB2 suppressed VEGF- and Ang1-induced proliferation and/or migration, which are mediated mainly through Ras/MAPK signaling cascades. From these results, we propose that ephrinB2-EphB, signaling through Ras/MAPK cascade, may be critical for proper morphogenesis of capillary endothelium through the arrest of endothelial cell proliferation and migration at the arterial-venous interface.

[PubMed - indexed for MEDLINE]
Free full text
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire
    Loading ...
    Support Center