Format

Send to

Choose Destination
See comment in PubMed Commons below
Appl Environ Microbiol. 2002 Jun;68(6):2763-9.

Involvement of Rhodocyclus-related organisms in phosphorus removal in full-scale wastewater treatment plants.

Author information

  • 1Department of Civil and Environmental Engineering, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA.

Abstract

The participation of organisms related to Rhodocyclus in full-scale enhanced biological phosphorus removal (EBPR) was investigated. By using fluorescent in situ hybridization techniques, the communities of Rhodocyclus-related organisms in two full-scale wastewater treatment plants were estimated to represent between 13 and 18% of the total bacterial population. However, the fractions of these communities that participated in polyphosphate accumulation depended on the type of treatment process evaluated. In a University of Cape Town EBPR process, the percentage of Rhodocyclus-related cells that contained polyphosphate was about 20% of the total bacterial population, but these cells represented as much as 73% of the polyphosphate-accumulating organisms (PAOs). In an aerated-anoxic EBPR process, Rhodocyclus-related PAOs were less numerous, accounting for 6% of the total bacterial population and 26% of the total PAO population. In addition, 16S ribosomal DNA sequences 99.9% similar to the sequences of Rhodocyclus-related organisms enriched in acetate-fed bench-scale EBPR reactors were recovered from both full-scale plants. These results confirmed the involvement of Rhodocyclus-related organisms in EBPR and demonstrated their importance in full-scale processes. In addition, the results revealed a significant correlation between the type of EBPR process and the PAO community.

PMID:
12039731
PMCID:
PMC123978
[PubMed - indexed for MEDLINE]
Free PMC Article
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire Icon for PubMed Central
    Loading ...
    Support Center