Send to

Choose Destination
Appl Environ Microbiol. 2002 Jun;68(6):2726-30.

Biodegradation of cis-dichloroethene as the sole carbon source by a beta-proteobacterium.

Author information

Air Force Research Laboratory-MLQL, Tyndall AFB, Florida 32403, USA.


An aerobic bacterium capable of growth on cis-dichloroethene (cDCE) as a sole carbon and energy source was isolated by enrichment culture. The 16S ribosomal DNA sequence of the isolate (strain JS666) had 97.9% identity to the sequence from Polaromonas vacuolata, indicating that the isolate was a beta-proteobacterium. At 20 degrees C, strain JS666 grew on cDCE with a minimum doubling time of 73 +/- 7 h and a growth yield of 6.1 g of protein/mol of cDCE. Chloride analysis indicated that complete dechlorination of cDCE occurred during growth. The half-velocity constant for cDCE transformation was 1.6 +/- 0.2 microM, and the maximum specific substrate utilization rate ranged from 12.6 to 16.8 nmol/min/mg of protein. Resting cells grown on cDCE could transform cDCE, ethene, vinyl chloride, trans-dichloroethene, trichloroethene, and 1,2-dichloroethane. Epoxyethane was produced from ethene by cDCE-grown cells, suggesting that an epoxidation reaction is the first step in cDCE degradation.

[Indexed for MEDLINE]
Free PMC Article

Supplemental Content

Full text links

Icon for HighWire Icon for PubMed Central
Loading ...
Support Center