Send to

Choose Destination
Gene. 2002 May 1;289(1-2):141-9.

Molecular cloning and characterisation of three new ATP-binding cassette transporter genes from the wheat pathogen Mycosphaerella graminicola.

Author information

Department of Plant Sciences, Laboratory of Phytopathology, Wageningen University, P.O. Box 8025, 6700 EE Wageningen, The Netherlands.


Three single copy ATP-binding cassette (ABC) transporter encoding genes, designated MgAtr3, MgAtr4, and MgAtr5, were cloned and sequenced from the plant pathogenic fungus Mycosphaerella graminicola. The encoded ABC proteins all exhibit the [NBD-TMS(6)](2) configuration and can be classified as novel members of the pleiotropic drug resistance (PDR) class of ABC transporters. The three proteins are highly homologous to other fungal and yeast, ABC proteins involved in multidrug resistance or plant pathogenesis. MgAtr4 and MgAtr5 possess a conserved ABC motif at both the N- and C-terminal domain of the protein. In contrast, the Walker A motif in the N-terminal and the ABC signature in the C-terminal domain of MgAtr3, deviate significantly from the consensus sequence found in other members of the PDR class of ABC transporters. Expression of MgAtr3 could not be detected under any of the conditions tested. However, MgAtr4 and MgAtr5 displayed distinct expression profiles when treated with a range of compounds known to be either substrates or inducers of ABC transporters. These included synthetic fungitoxic compounds, such as imazalil and cyproconazole, natural toxic compounds, such as the plant defence compounds eugenol and psoralen, and the antibiotics cycloheximide and neomycin. The expression pattern of the genes was also dependent on the morphological state of the fungus. The findings suggest a role for MgAtr4 and MgAtr5 during plant pathogenesis and in protection against toxic compounds.

[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Elsevier Science
Loading ...
Support Center