Send to

Choose Destination
J Biol Chem. 2002 Aug 2;277(31):28182-90. Epub 2002 May 28.

Luminal leptin enhances CD147/MCT-1-mediated uptake of butyrate in the human intestinal cell line Caco2-BBE.

Author information

Epithelial Pathology Unit, Department of Pathology and Laboratory, Emory University School of Medicine, Atlanta, Georgia 30322, USA.


In the intestine, butyrate constitutes the major energy fuel for colonocytes. However, little is known about the transport of butyrate and its regulation in the intestine. In this study we demonstrate that the monocarboxylate transporter (MCT-1) is apically polarized in model human intestinal epithelia and is involved in butyrate uptake by Caco2-BBE cell monolayers. The butyrate uptake by Caco2-BBE cell monolayers displayed conventional Michaelis-Menten kinetics and was found to be pH-dependent, Na(+)-independent, 4,4'-diisothiocyanatostilbene-2,2'-disulfonic acid-insensitive, and inhibited by the monocarboxylate transporter inhibitor alpha-cyano-4-hydroxycinnamate and by an excess of unlabeled butyrate. We show that MCT-1 associates with CD147 at the apical plasma membrane in Caco2-BBE cell monolayers. Using antisense CD147, we demonstrate that the association of CD147 with MCT-1 is critical for the butyrate transport activity. Interestingly, we show for the first time hormonal regulation of CD147/MCT-1 mediated butyrate uptake. Specifically, luminal leptin significantly up-regulates MCT-1-mediated butyrate uptake by increasing its maximal velocity (V(max)) without any modification in the apparent Michaelis-Menten constant (K(m)). Finally, we show that luminal leptin up-regulates butyrate uptake in Caco2-BBE monolayers by two distinct actions: (i) increase of the intracellular pool of MCT-1 protein without affecting CD147 expression and (ii) translocation of CD147/MCT-1 to the apical plasma membrane of Caco2-BBE cell monolayers.

[Indexed for MEDLINE]
Free full text

Supplemental Content

Full text links

Icon for HighWire
Loading ...
Support Center