Format

Send to

Choose Destination
See comment in PubMed Commons below
Cell Signal. 2002 Sep;14(9):779-85.

Delayed ERK activation by ceramide reduces melanin synthesis in human melanocytes.

Author information

1
Department of Dermatology and Artificial Organ Laboratory of Clinical Research Institute, Seoul National University College of Medicine, 28 Yongon-Dong, Chongno-Gu, Seoul 110-744, Republic of Korea.

Abstract

Sphingolipid metabolites regulate many aspects of cell growth and differentiation. However, the effects of sphingolipids on the growth and melanogenesis of human melanocytes are not known. In the present study, we investigated the effects of sphingolipid metabolites and the possible signalling pathways involved in human melanocytes. Our data show that C(2)-ceramide inhibits cell growth in a dose-dependent manner, whereas sphingosine-1-phosphate (SPP) has no effect. Moreover, we observed that the melanin content of the cells was significantly decreased by C(2)-ceramide. The pigmentation-inhibiting effect of C(2)-ceramide at 1-10 microM was stronger than that of kojic acid, tested at 1-100 microM. The tyrosinase activity of cell extracts was reduced by C(2)-ceramide treatment. However, in the cell-free system, C(2)-ceramide could not suppress tyrosinase, whereas kojic acid directly inhibited tyrosinase. These results suggest that C(2)-ceramide decreases the pigmentation of melanocytes indirectly regulating tyrosinase. Furthermore, we found that C(2)-ceramide decreased the protein expression of microphthalmia-associated transcription factor (MITF), which is required for tyrosinase expression. To identify the signalling pathway of ceramide, we studied the ability of C(2)-ceramide to influence extracellular signal-regulated protein kinase (ERK) and Akt/protein kinase B (PKB) activation. C(2)-ceramide induced a delayed activation of ERK ( > 1 h) and a much later activation of Akt/PKB ( > 3 h) in human melanocytes. In addition, the specific inhibition of the ERK and the Akt signalling pathways by PD98059 and LY294002, respectively, increased melanin synthesis. Thus, it seems that sustained ERK and Akt activation may lead to the suppression of cell growth and melanogenesis.

PMID:
12034359
[Indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Elsevier Science
    Loading ...
    Support Center