Send to

Choose Destination
Cytokine. 2002 Mar 7;17(5):266-74.

Differential expression and tissue compartmentalization of the inflammatory response following thermal injury.

Author information

Center for Surgical Research and Department of Surgery, University of Alabama at Birmingham, Birmingham, AL 35294-0019, USA.


Studies have shown that both animal tissue-fixed immune cells and human peripheral blood mononuclear cell (PBMC) functions are altered after burn injury. Additional studies suggest that the burn injury-induced alterations in these divergent cell populations from different species are similar. It remains unknown, however, whether the observed changes in animal tissue-fixed immune cell function following thermal injury also occurs to a similar extent in the PBMC population. The aim of our study was to compare PBMC and tissue-fixed immune cell functions from the same animal using a murine burn model. At 7 days post-burn, mice were more susceptible to sepsis and delayed type hypersensitivity responses were suppressed. Splenocytes isolated from injured mice displayed suppressed proliferation and increased IL-10 production. In contrast, PBMC from injured mice displayed suppressed proliferation, IL-2 and IFN-gamma production. Splenic macrophage nitric oxide, PGE(2), TNF-alpha, IL-6 and IL-10 production was enhanced post-burn and IL-12 production was suppressed. PBMC from such animals displayed enhanced PGE(2) production and suppressed IL-6 and IL-12 production. These results indicate that while an immunosuppressive Th(2) phenotype (increased IL-10 and/or suppressed IL-2, IFN-gamma) was induced in both the splenic and PBMC compartments post-injury, differential expression and dimorphism in the response also exists. Thus, the assessment of only PBMC function in burn patients may not accurately reflect the patient's actual immune status at the tissue level.

[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Elsevier Science
Loading ...
Support Center