Format

Send to

Choose Destination
Cell Calcium. 2002 Mar;31(3):127-36.

Intracellular calcium regulation in inner hair cells from neonatal mice.

Author information

1
Department of Physiology, School of Medical Sciences, University of Bristol, UK. Helen.Kennedy@bristol.ac.uk

Abstract

The mechanisms that regulate the concentration of ionized intracellular calcium (Ca(2+)(i)) in the base of neonatal mouse inner hair cells, close to synaptic sites, were investigated using confocal microscopy combined with conventional patch-clamp electrophysiology. Cells were depolarized under whole-cell voltage clamp to load the cell with C a(2+) through voltage-activated Ca(2+) channels. Repeated depolarizations produced Ca(2+)(i) increases with similar amplitudes and time-courses of recovery. The rate of recovery from depolarization-induced Ca(2+)(i) loads was used to assess the mechanisms responsible for Ca(2+)(i) regulation. Removal of extracellular sodium had no effect on resting Ca(2+)(i) or the rate of recovery of Ca(2+)(i) suggesting no role for Na:Ca exchange in these cells. Inhibitors of intracellular store uptake such as thapsigargin, 2,5-di(tert-butyl)hydroquinone (BHQ) and cyclopiazonic acid (CPA) caused an increase in resting Ca(2+)(i) and slowed the rate of recovery, indicating that Ca(2+) can be taken up intracellularly. However, 5mM caffeine failed to cause a detectable release of Ca(2+) from intracellular stores. FCCP, a mitochondrial inhibitor, slowed the rate of recovery from Ca(2+)(i) loads, indicating a role for mitochondrial Ca(2+) uptake. The largest effects were seen with intracellular vanadate (1mM) which caused an irreversible rise in resting Ca(2+)(i) and depolarization-induced increases in Ca(2+)(i) failed to recover fully. Together, these data indicate that both thapsigargin-sensitive stores and mitochondria can take up Ca(2+)(i), but that Ca(2+) efflux from the cell occurs solely via a plasma membrane Ca(2+)-ATPase.

PMID:
12027386
DOI:
10.1054/ceca.2001.0267
[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Elsevier Science
Loading ...
Support Center