Send to

Choose Destination
Cell Calcium. 2002 Mar;31(3):127-36.

Intracellular calcium regulation in inner hair cells from neonatal mice.

Author information

Department of Physiology, School of Medical Sciences, University of Bristol, UK.


The mechanisms that regulate the concentration of ionized intracellular calcium (Ca(2+)(i)) in the base of neonatal mouse inner hair cells, close to synaptic sites, were investigated using confocal microscopy combined with conventional patch-clamp electrophysiology. Cells were depolarized under whole-cell voltage clamp to load the cell with C a(2+) through voltage-activated Ca(2+) channels. Repeated depolarizations produced Ca(2+)(i) increases with similar amplitudes and time-courses of recovery. The rate of recovery from depolarization-induced Ca(2+)(i) loads was used to assess the mechanisms responsible for Ca(2+)(i) regulation. Removal of extracellular sodium had no effect on resting Ca(2+)(i) or the rate of recovery of Ca(2+)(i) suggesting no role for Na:Ca exchange in these cells. Inhibitors of intracellular store uptake such as thapsigargin, 2,5-di(tert-butyl)hydroquinone (BHQ) and cyclopiazonic acid (CPA) caused an increase in resting Ca(2+)(i) and slowed the rate of recovery, indicating that Ca(2+) can be taken up intracellularly. However, 5mM caffeine failed to cause a detectable release of Ca(2+) from intracellular stores. FCCP, a mitochondrial inhibitor, slowed the rate of recovery from Ca(2+)(i) loads, indicating a role for mitochondrial Ca(2+) uptake. The largest effects were seen with intracellular vanadate (1mM) which caused an irreversible rise in resting Ca(2+)(i) and depolarization-induced increases in Ca(2+)(i) failed to recover fully. Together, these data indicate that both thapsigargin-sensitive stores and mitochondria can take up Ca(2+)(i), but that Ca(2+) efflux from the cell occurs solely via a plasma membrane Ca(2+)-ATPase.

[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Elsevier Science
Loading ...
Support Center