Format

Send to

Choose Destination
See comment in PubMed Commons below
Cancer Invest. 2002;20(3):373-86.

Applications of SKY in cancer cytogenetics.

Author information

1
Ontario Cancer Institute, Princess Margaret Hospital, University Health Network, Ontario, Toronto, Canada M5G 2M9.

Abstract

Clinical and cancer cytogenetics is a rapidly evolving discipline. The past decade has seen a dramatic change in molecular biology and fluorescence microscopy. The use of fluorescence in situ hybridization (FISH) technologies has enabled the rapid analysis of cytogenetic specimens as an adjunct to classical cytogenetic analysis. Spectral karyotyping (SKY) is a 24-color, multi-chromosomal painting assay that allows the visualization of all human chromosomes in one experiment. The ability for SKY analysis to detect equivocal or complex chromosomal rearrangements, as well as to identify the chromosomal origins of marker chromosomes and other extra-chromosomal structures, makes this a highly sensitive and valuable tool for identifying recurrent chromosomal aberrations. The SKY has been applied to various tumor groups including hematological malignancies, sarcomas, carcinomas and brain tumors, with the intent of identifying specific chromosomal abnormalities that may provide insight to the genes involved in the disease process as well as identifying recurrent cytogenetic markers for clinical diagnosis and prognostic assessment. The SKY has also been applied for the mouse genome, enabling investigators to extrapolate information from mouse models of cancer to their human counterparts. This review will address the advances that SKY has facilitated in the field of cancer cytogenetics, as well as its variety of application in the cancer research laboratories.

PMID:
12025233
[Indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Loading ...
    Support Center