Format

Send to

Choose Destination
J Lab Clin Med. 2002 Apr;139(4):218-26.

Ischemia/reperfusion-induced increase in the hepatic level of prostacyclin is mainly mediated by activation of capsaicin-sensitive sensory neurons in rats.

Author information

1
Department of Laboratory Medicine, Kumamoto University School of Medicine, Honjo 1-1-1, Kumamoto 068-0811, Japan.

Abstract

Capsaicin-sensitive sensory neurons are nociceptive neurons that release calcitonin gene-related peptide (CGRP) on activation by various noxious stimuli. CGRP has been shown to increase the endothelial production of prostacyclin, which reduces ischemia/reperfusion (I/R)-induced liver injury. Therefore, if the sensory neurons can be activated by the pathologic process of hepatic I/R, they might help ameliorate I/R-induced liver injury by promoting the endothelial production of prostacyclin, also known as prostaglandin I(2). In this study, we examined these possibilities using a rat model of I/R-induced liver injury. Male Wistar rats were subjected to 60-minute hepatic ischemia and subsequent reperfusion. Hepatic levels of 6-keto-prostaglandin F(1alpha) (6-keto-PGF(1alpha)), a stable metabolite of prostacyclin, were significantly increased after hepatic I/R, peaking 1 hour after reperfusion. Administration of capsaicin and CGRP significantly enhanced I/R-induced increases in hepatic levels of 6-keto-PGF(1alpha), increased hepatic-tissue blood flow after reperfusion, and inhibited the I/R-induced increase in tissue levels of both tumor necrosis factor-alpha (TNF-alpha) and myeloperoxidase. Capsazepine, a vanilloid receptor antagonist; CGRP(8-37), a CGRP-receptor antagonist; l-nitro-arginine-methyl-ester (L-NAME), a nonselective inhibitor of nitric oxide (NO) synthase (NOS); and indomethacin, a nonselective inhibitor of cyclooxygenase, inhibited the I/R-induced increases in hepatic tissue levels of 6-keto-PGF(1alpha) and decreased hepatic-tissue blood flow after reperfusion. These compounds significantly enhanced the I/R-induced increases in hepatic tissue levels of both TNF-alpha and myeloperoxidase. Although I/R-induced liver injury was significantly reduced by capsaicin and CGRP, it was exacerbated by capsazepine, CGRP(8-37), L-NAME, and indomethacin. Administration of aminoguanidine, a selective inhibitor of the inducible form of NOS, and NS-398, a selective inhibitor of cyclooxygenase-2, demonstrated no effects on the liver injury or the hepatic levels of 6-keto-PGF(1alpha). These findings strongly suggest that the activation of the sensory neurons helps ameliorate I/R-induced liver injury both by increasing hepatic-tissue blood flow and by limiting inflammatory response through the enhancement of endothelial production of prostacyclin. In the sensory neuron-mediated enhancement of endothelial production of prostacyclin, CGRP-induced activation of both endothelial NOS and cyclooxygenase-1 may be critically involved.

PMID:
12024109
[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Elsevier Science
Loading ...
Support Center