Format

Send to

Choose Destination
See comment in PubMed Commons below
Biochem J. 2002 Aug 15;366(Pt 1):255-63.

The inhibition of the sarcoplasmic/endoplasmic reticulum Ca2+-ATPase by macrocyclic lactones and cyclosporin A.

Author information

1
School of Biosciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, U.K.

Abstract

The pharmacology of macrocyclic lactones is varied, with many beneficial effects in treating disease processes. FK-506, rapamycin and ascomycin have been utilized as immunosuppressant agents. Ivermectin is typically used to treat parasitic worm infections in mammals. Another immunosuppressant, cyclosporin A, is a cyclic oligotide that has similar immunosuppressant properties to those exerted by macrocyclic lactones. Here we report on the inhibition by these compounds of sarcoplasmic/endoplasmic-reticulum Ca(2+)-ATPase (SERCA) Ca(2+) pumps. Ivermectin, cyclosporin A and rapamycin all inhibited the skeletal muscle sarcoplasmic reticulum Ca(2+)-ATPase (SERCA1). In addition, although ivermectin inhibited brain microsomal endoplasmic reticulum (type 2b) Ca(2+)-ATPase, cyclosporin A and rapamycin did not. As cyclosporin A also did not inhibit cardiac Ca(2+)-ATPase activity, this would suggest that it could be an isoform-specific inhibitor. Ivermectin was shown to be the most potent Ca(2+)-ATPase inhibitor of the macrocyclic lactones (IC(50)=7 microM). It appears to show a 'competitive' inhibition with respect to high concentrations of ATP by increasing the regulatory binding site K(m) but without affecting the catalytic site K(m). In addition, ivermectin stabilizes the ATPase in an E1 conformational state, and inhibits Ca(2+) release from the enzyme during turnover. This would suggest that ivermectin inhibits Ca(2+) release from the luminal binding sites of the phosphoenzyme intermediate, a step that is known to be accelerated by high [ATP].

PMID:
12022919
PMCID:
PMC1222768
DOI:
10.1042/BJ20020431
[Indexed for MEDLINE]
Free PMC Article
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire Icon for PubMed Central
    Loading ...
    Support Center