Format

Send to

Choose Destination
See comment in PubMed Commons below
J Comput Biol. 2002;9(2):317-30.

Analysis techniques for microarray time-series data.

Author information

1
Department of Computer Science, State University of New York, Stony Brook, NY 11794, USA.

Abstract

We address possible limitations of publicly available data sets of yeast gene expression. We study the predictability of known regulators via time-series analysis, and show that less than 20% of known regulatory pairs exhibit strong correlations in the Cho/Spellman data sets. By analyzing known regulatory relationships, we designed an edge detection function which identified candidate regulations with greater fidelity than standard correlation methods. We develop general methods for integrated analysis of coarse time-series data sets. These include 1) methods for automated period detection in a predominately cycling data set and 2) phase detection between phase-shifted cyclic data sets. We show how to properly correct for the problem of comparing correlation coefficients between pairs of sequences of different lengths and small alphabets. Finally, we note that the correlation coefficient of sequences over alphabets of size two can exhibit very counterintuitive behavior when compared with the Hamming distance.

PMID:
12015884
DOI:
10.1089/10665270252935485
[Indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Mary Ann Liebert, Inc.
    Loading ...
    Support Center