Send to

Choose Destination
Am J Physiol Regul Integr Comp Physiol. 2002 Jun;282(6):R1618-27.

PGE(2) increases release of substance P from renal sensory nerves by activating the cAMP-PKA transduction cascade.

Author information

Department of Internal Medicine, Department of Veterans Affairs Medical Center, Iowa City 52246, USA.


Increasing renal pelvic pressure increases afferent renal nerve activity (ARNA) by a PGE(2)-mediated release of substance P (SP) from renal pelvic nerves. The role of cAMP activation in the PGE(2)-mediated release of SP was studied by examining the effects of the adenylyl cyclase (AC) activator forskolin and AC inhibitor dideoxyadenosine (DDA). Forskolin enhanced the bradykinin-mediated release of SP from an isolated rat renal pelvic wall preparation, from 7.3 +/- 1.3 to 15.6 +/- 3.0 pg/min. PGE(2) at a subthreshold concentration for SP release mimicked the effects of forskolin. The EP(2) receptor agonist butaprost, 15 microM, and PGE(2), 0.14 microM, produced similar increases in SP release, from 5.8 +/- 0.8 to 17.0 +/- 2.3 pg/min and from 8.0 +/- 1.3 to 21.6 +/- 2.7 pg/min. DDA blocked the SP release produced by butaprost and PGE(2). The PGE(2)-induced release of SP was also blocked by the PKA inhibitors PKI(14-22) and H-89. Studies in anesthetized rats showed that renal pelvic administration of butaprost, 10 microM, and PGE(2), 0.14 microM, resulted in similar ARNA responses, 1,520 +/- 390 and 1,170 +/- 270%. s (area under the curve of ARNA vs. time) that were blocked by DDA. Likewise, the ARNA response to increased renal pelvic pressure, 7,180 +/- 710%. s, was blocked by DDA. In conclusion, PGE(2) activates the cAMP-PKA pathway leading to a release of SP and activation of renal pelvic mechanosensory nerve fibers.

[Indexed for MEDLINE]
Free full text

Supplemental Content

Full text links

Icon for Atypon
Loading ...
Support Center