Send to

Choose Destination
Behav Brain Res. 2002 May 14;132(2):145-58.

Fierce: a new mouse deletion of Nr2e1; violent behaviour and ocular abnormalities are background-dependent.

Author information

Department of Biochemistry and Molecular Biology, Johns Hopkins School of Public Health, Baltimore, MD 21205, USA.


A new spontaneous mouse mutation named fierce (frc) is deleted for the nuclear receptor Nr2e1 gene (also known as Tlx, mouse homolog of Drosophila tailless). The fierce mutation is genetically and phenotypically similar to Nr2e1 targeted mutations previously studied on segregating genetic backgrounds. However, we have characterized the fierce brain, eye, and behavioural phenotypes on three defined genetic backgrounds (C57BL/6J, 129P3/JEms, and B6129F1). The data revealed many novel and background-dependent phenotypic characteristics. Whereas abnormalities in brain development, hypoplasia of cerebrum and olfactory lobes, were consistent on all three backgrounds, our novel finding of enlarged ventricles in 100% and overt hydrocephalus in up to 30% of fierce mice were unique to the C57BL/6J background. Developmental eye abnormalities were also background-dependent with B6129F1-frc mice having less severe thinning of optic layers and less affected electroretinogram responses. Impaired regression of hyaloid vessels was observed in all backgrounds. Furthermore, retinal vessels were deficient in size and number in 129P3/JEms-frc and B6129F1-frc mice but almost entirely absent in C57BL/6J-frc mice. We present the first standardized behavioural tests conducted on Nr2e1 mutant mice and show that C57BL/6J-frc and B6129F1-frc mice have deficits in sensorimotor assays and are hyperaggressive in both sexes and backgrounds. However, C57BL/6J-frc mice were significantly more aggressive than B6129F1-frc mice. Overall, this extensive characterization of the fierce mutation is essential to its application for the study of behavioural, and brain and eye developmental disorders. In addition, the background-dependent differences revealed will enable the identification of important genetic modifiers.

[Indexed for MEDLINE]
Free PMC Article

Supplemental Content

Full text links

Icon for Elsevier Science Icon for PubMed Central
Loading ...
Support Center