Format

Send to

Choose Destination
Bone. 2002 May;30(5):670-6.

Parathyroid hormone-related protein (PTHrP)-(1-139) isoform is efficiently secreted in vitro and enhances breast cancer metastasis to bone in vivo.

Author information

1
Division of Endocrinology, Department of Medicine, University of Texas Health Science Center, Mail Code 7877, 7703 Floyd Curl Drive, San Antonio, TX 78229-3900, USA. guise@uthscsa.edu

Abstract

Parathyroid hormone-related peptide (PTHrP) is a mediator of local osteolysis due to breast cancer. Three isoforms of PTHrP, (1-139), (1-141), and (1-173), are products of alternative splicing in humans, but the specific contribution of each of these isoforms to osteolytic metastasis caused by breast cancer has not been evaluated. To determine the role of PTHrP isoforms in breast cancer metastasis to bone, the human breast cancer cell line MDA-MB-231 (MDA-231) was stably transfected with cDNAs for human prepro PTHrP-(1-139), -(1-141), or -(1-173). Stable MDA/PTHrP-(1-139) clones expressed more PTHrP mRNA and secreted more PTHrP protein, compared with MDA/PTHrP-(1-141), -(1-173), or parental MDA-231. Parental MDA-231 cells and clones expressing each isoform had similar growth rates in vitro. In a mouse model of bone metastases, the osteolytic lesion area of radiographs was greatest in mice bearing MDA/PTHrP-(1-139) compared with those bearing MDA/PTHrP-(1-141), -(1-173), or parental MDA-231. Ca(++) and plasma PTHrP concentrations were significantly higher in the MDA/PTHrP-(1-139) compared with the MDA/PTHrP-(1-141), -(1-173), or parental MDA-231 groups. These data demonstrate that the PTHrP-(1-139) isoform was produced to a greater extent than PTHrP-(1-141) or -(1-173), and in vivo enhanced osteolysis with increased plasma PTHrP concentrations and hypercalcemia compared with overexpression of PTHrP-(1-141) or -(1-173).

PMID:
11996903
DOI:
10.1016/s8756-3282(02)00685-3
[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Elsevier Science
Loading ...
Support Center