Format

Send to

Choose Destination
See comment in PubMed Commons below
Semin Thromb Hemost. 2002 Apr;28(2):111-32.

Response of von Willebrand factor parameters to desmopressin in patients with type 1 and type 2 congenital von Willebrand disease: diagnostic and therapeutic implications.

Author information

1
Department of Hematology, University Hospital Antwerp, Belgium, The Netherlands. jan.michiels@uza.uia.ac.be

Abstract

In the present study, we prospectively evaluated the contribution of the von Willebrand factor collagen-binding activity (vWF:CBA) assay, vWF multimeric analysis, and the response to intravenous desmopressin (DDAVP) to correctly diagnose and classify congenital von Willebrand disease (CvWD) in 24 probands with mild to moderate type 1 vWD, 6 probands with severe CvWD type 1, and 12 probands with type 2 CvWD. CvWD type 1 of mild to moderate severity is featured by proportionally decreased levels of vWF antigen (vWF:Ag), vWF ristocetin cofactor activity (vWF:RCof), and vWF:CBA between 0.20 and 0.60 u/mL and a normal response to DDAVP of factor (F) VIIIc and all vWF parameters. Severe type 1 CvWD with vWF parameters below 0.10 or 0.20 u/mL is associated with a decreased response to DDAVP of all vWF parameters, indicating a defective synthesis or secretion vWF by endothelial cells, or both. CvWD 2M may present as severe type 1 CvWD, as type 1 "platelet-discordant" CvWD, or with the combination of a discrepant vWF:RCof/Ag ratio and the presence of all vWF multimers. Ristocetin-induced platelet aggregation (RIPA) is normal in type 1 CvWD. CvWD 2M is typically featured by decreased RIPA, normal or near normal vWF multimers, and no or only a poor response to DDAVP of vWF:RCof as compared with a fairly good response to DDAVP of vWF:Ag and vWF:CBA. CvWD Vicenza is characterized by unusually large vWF multimers and very low levels of FVIIIc, vWF:Ag, and vWF:RCof. CvWD Vicenza differs from CvWD 2M because the vWF:RCof/Ag ratios are completely normal before and after DDAVP; the response to DDAVP is equally good for FVIIIc, vWF:Ag, vWF:RCof, and vWF:CBA and is followed by very short half-life times for FVIIIc and all vWF parameters. Pertinent findings in type 2A and 2B CvWD included prolonged Ivy bleeding time (BT), low vWF:RCof/Ag and vWF:CBA ratios, absence of the high vWF multimers, and, depending on the severity of the absence of intermediate vWF multimers, pronounced increase of low vWF multimers and vWF degradation products because of increased proteolysis of the high and intermediate vWF multimers. RIPA is normal in CvWD 2A and increased in CvWD 2B. The response to DDAVP in CvWD 2A is normal for FVIIIc and vWF:Ag but is transient with partial correction and short half-life times of vWF:CBA and vWF:RCof. DDAVP does not correct BT and multimeric patterns in CvWD type 2B, despite significant increase of vWF parameters. CvWD types 2C, 2D, and 2E are featured by very low functional vWF parameters, the presence of typically abnormal vWF multimers, a very poor response of vWF:CBA, a decreased response of vWF:RCof, and a fairly good response of vWF:Ag to DDAVP with no correction of prolonged Ivy BT and no correction of the vWF multimeric pattern as the consequence of a multimerization or dimerization defect of the vWF molecules. CvWD type 2N usually presents with much lower levels for FVIIIc as compared with vWF, normal Ivy BT, and normal vWF multimeric pattern. The response to DDAVP is normal for all vWF parameters but is decreased for FVIIIc with shortened half-life times.

PMID:
11992235
DOI:
10.1055/s-2002-27814
[Indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Georg Thieme Verlag Stuttgart, New York
    Loading ...
    Support Center