Format

Send to

Choose Destination
See comment in PubMed Commons below
Can J Microbiol. 2002 Mar;48(3):256-61.

Long-term survival and germination of Bacillus thuringiensis var. kurstaki in a field trial.

Author information

1
National Environmental Research Institute, Department of Environmental Chemistry and Microbiology, Roskilde, Denmark. nbh@dmu.dk

Abstract

Long-term survival, dispersal, and germination of Bacillus thuringiensis var. kurstaki DMU67R has been investigated in a field trial. An experimental cabbage plot was sprayed with DMU67R in 1993 and allowed to lie fallow since. The investigations reported here were carried out from 1997 to 2000 in this plot. High persistence of DMU67R for 7 years in the bulk soil of the plot has been demonstrated. The numbers have not significantly reduced since 1994, stabilizing around 6.6 x 10(2) cfu/g from 1996 to 2000. Horizontal dispersal of DMU67R in the 1994-1999 period was limited. Vertical dispersal occurred from 1994 to 1999, as 77% of the population of DMU67R occurred in the 0-2 cm layer in 1994, while only 22% of the population was found there in 1999. Most of the population in 1999 was present homogeneously in the upper 6 cm of the soil profile. Germination, as evidenced by the ratio of DMU67R cfu before and after heat treatment, was not observed in the bulk soil. However, in the rhizospheres of dandelion (Taraxacum officinalis) and quackgrass (Agropyron repens), 40 and 50% of DMU67R was present as vegetative germinated cells, respectively. No germination occurred in the rhizosphere of red fescue (Festuca rubra). The material from the gut of the earthworm species Lumbricus rubellus, Lumbricus terrestris, and Apporrectodea caliginosa and from a tipulid larvae from the plot also contained vegetative cells of DMU67R. Further investigations of A. caliginosa showed that germination seemed to be restricted to the gut and that sporulation occurred after defecation. The germination of DMU67R in rhizospheres and in the gut of nontarget invertebrates suggests that survival in the soil of B. thuringiensis is a dynamic process involving germination, cell divisions, and sporulation in specific microhabitats.

PMID:
11989770
[Indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Loading ...
    Support Center