Format

Send to

Choose Destination
Int J Cancer. 2002 May 10;99(2):292-8.

Suberoylanilide hydroxamic acid (SAHA) overcomes multidrug resistance and induces cell death in P-glycoprotein-expressing cells.

Author information

1
Cancer Immunology Division, The Peter MacCallum Cancer Institute, East Melbourne, Victoria, Australia.

Abstract

Multidrug resistance (MDR) mediated by the ATP-dependent efflux protein P-glycoprotein (P-gp) is a major obstacle to the successful treatment of many cancers. In addition to effluxing toxins, P-gp has been shown to protect tumor cells against caspase-dependent apoptosis mediated by Fas and tumor necrosis factor receptor (TNFR) ligation, serum starvation and ultraviolet (UV) irradiation. However, P-gp does not protect against caspase-independent cell death mediated by granzyme B or pore-forming proteins (perforin, pneumolysin and activated complement). We examined the effects of the chemotherapeutic hybrid polar compound suberoylanilide hydroxamic acid (SAHA) on P-gp-expressing MDR human tumor cell lines. In the CEM T-cell line, SAHA, a histone deacetylase inhibitor, induced equivalent death in P-gp-positive cells compared with P-gp-negative cells. Cell death was marked by the caspase-independent release of cytochrome c, reactive oxygen species (ROS) production and Bid cleavage that was not affected by P-gp expression. However, consistent with our previous findings, SAHA-induced caspase activation was inhibited in P-gp-expressing cells. These data provide evidence that P-gp inhibits caspase activation after chemotherapeutic drug treatment and demonstrates that SAHA may be of value for the treatment of P-gp-expressing MDR cancers.

PMID:
11979447
DOI:
10.1002/ijc.10327
[Indexed for MEDLINE]
Free full text

Supplemental Content

Full text links

Icon for Wiley
Loading ...
Support Center