Format

Send to

Choose Destination
See comment in PubMed Commons below
Pediatr Res. 2002 May;51(5):564-70.

Quantitative near infrared spectroscopy measurement of cerebral hemodynamics in newborn piglets.

Author information

1
Imaging Division, Lawson Health Research Institute, London, Ontario, Canada, N6A 4V2.

Abstract

Severely premature infants are often at increased risk of cerebral hemorrhage and/or ischemic injury caused by immature autoregulatory control of blood flow to the brain. If blood flow is too high, the infant is at risk of hemorrhage, whereas too little blood flow can result in ischemic injury. The development of a noninvasive, bedside means of measuring cerebral hemodynamics would greatly facilitate both diagnosis and monitoring of afflicted individuals. It is to this end that we have developed a near infrared spectroscopy (NIRS) system that allows for quantitative, bedside measurement of cerebral blood flow (CBF), cerebral blood volume (CBV), and mean transit time (MTT). The technique requires an i.v. injection of the near infrared chromophore indocyanine green. Six newborn piglets, median age of 18 h (range 6-54 h), median weight of 1.75 kg (range 1.5-2.1 kg), were studied. Measurements of CBF, CBV, and MTT were made at normocapnia, hypocapnia, and hypercapnia to test the technique over a range of hemodynamic conditions. The accuracy of our new approach has been determined by direct comparison with measurements made using a previously validated computed tomography technique. Paired t tests showed no significant difference between computed tomography and NIRS measurements of CBF, CBV, and MTT, and mean biases between the two methods were -2.05 mL x min(-1) x 100 g(-1), -0.18 mL x 100 g(-1), and 0.43 s, respectively. The precision of NIRS CBF, CBV, and MTT measurements, as determined by repeated-measures ANOVA, was 9.71%, 13.05%, and 7.57%, respectively.

[Indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Nature Publishing Group
    Loading ...
    Support Center