Format

Send to

Choose Destination
See comment in PubMed Commons below
Jpn J Antibiot. 2002 Feb;55(1):22-60.

[Post-marketing surveillance of antibacterial activities of cefozopran against various clinical isolates--II. Gram-negative bacteria].

[Article in Japanese]

Author information

1
Department of Clinical Pathology, Juntendo University, School of Medicine.

Abstract

As a post-marketing surveillance, the in vitro antibacterial activities of cefozopran (CZOP), an agent of cephems, against various clinical isolates were yearly evaluated and compared with those of other cephems, oxacephems, penicillins, monobactams, and carbapenems. Changes in CZOP susceptibility for the bacteria were also evaluated with the bacterial resistance ratio calculated with the breakpoint MIC. Twenty-five species (3,362 strains) of Gram-negative bacteria were isolated from the clinical materials annually collected from 1996 to 2000, and consisted of Moraxella (Branhamella) catarrhalis (n = 136), Haemophilus influenzae (n = 289), Escherichia coli (n = 276), Klebsiella pneumoniae (n = 192), Klebsiella oxytoca (n = 157), Enterobacter cloacae (n = 189), Enterobacter aerogenes (n = 93), Serratia marcescens (n = 172), Serratia liquefaciens (n = 24), Citrobacter freundii (n = 177), Citrobacter koseri (n = 70), Proteus mirabilis (n = 113), Proteus vulgaris (n = 89), Morganella morganii (n = 116), Providencia spp. (n = 41), Pseudomonas aeruginosa (n = 290), Pseudomonas fluorescens (n = 56), Pseudomonas putida (n = 63), Acinetobacter baumannii (n = 146), Acinetobacter lwoffii (n = 34), Burkholderia cepacia (n = 101), Stenotrophomonas maltophilia (n = 169), Bacteroides fragilis group (n = 196), and Prevotella/Porphyromonas (n = 173). An antibacterial activity of CZOP against E. coli, K. pneumoniae, K. oxytoca, and S. marcescens was potent and consistent with or more preferable than the study results obtained until the new drug application approval. MIC90 of CZOP against M.(B.) catarrhalis, C. koseri, and P. aeruginosa was not considerably changed and consistent with the study results obtained until the new drug application approval. MIC90 of CZOP against E. cloacae, E. aerogenes, and P. mirabilis increased year by year. The increase in MIC90 of CZOP against E. aerogenes and P. mirabilis, however, was not considered to be an obvious decline in susceptibility. In contract, the susceptibility of E. cloacae to CZOP was suspected to be decreasing because this species showed 20.6% resistance to CZOP. MIC90 of CZOP against C. freundii was variably changed or not one-sidedly, but was higher than the values obtained until the new drug application approval. Additionally, MIC90 of CZOP against H. influenzae was stable during 5 years except being higher in 1999, and, as a whole, was a little higher than the values obtained until the new drug application approval. An antibacterial activity of CZOP against P. fluorescens, P. putida, B. cepacia, S. maltophilia, B. fragilis group, and Prevotella/Porphyromonas was weak like the other cephems. Changes in MIC90 of CZOP against the other bacteria were 2 tubes or more through 5-year study period, but did not tend towards a unilateral direction as meaning a decline in susceptibility.

PMID:
11977920
[Indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Loading ...
    Support Center