Format

Send to

Choose Destination
Cell Motil Cytoskeleton. 2002 Apr;51(4):187-96.

Quantification of Shigella IcsA required for bacterial actin polymerization.

Author information

1
Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, New York, USA.

Abstract

Shigella move through the cytoplasm of host cells by active polymerization of host actin to form an "actin tail." Actin tail assembly is mediated by the Shigella protein IcsA. The process of Shigella actin assembly has been studied extensively using IcsA-expressing Escherichia coli in cytoplasmic extracts of Xenopus eggs. However, for reasons that have been unclear, wild type Shigella does not assemble actin in these extracts. We show that the defect in actin assembly in Xenopus extracts by Shigella can be rescued by increasing IcsA expression by approximately 3-fold. We calculate that the number of IcsA molecules required on an individual bacterium to assemble actin filaments in extracts is approximately 1,500-2,100 molecules, and the number of IcsA molecules required to assemble an actin tail is approximately 4,000 molecules. The majority of wild type Shigella do not express these levels of IcsA when grown in vitro. However, in infected host cells, IcsA expression is increased 3.2-fold, such that the number of IcsA molecules on a significant percentage of intracellular wild type Shigella would exceed that required for actin assembly in extracts. Thus, the number of IcsA molecules estimated from our studies in extracts as being required on an individual bacterium to assemble actin filaments or an actin tail is a reasonable prediction of the numbers required for these functions in Shigella-infected cells.

PMID:
11977093
DOI:
10.1002/cm.10024
[Indexed for MEDLINE]

Supplemental Content

Loading ...
Support Center