Send to

Choose Destination
Nat Genet. 2002 May;31(1):100-5. Epub 2002 Apr 22.

Evidence of en bloc duplication in vertebrate genomes.

Author information

INSERM Unité 119, 27 bd Leï Roure, 13009 Marseille, France.


It has been 30 years since it was first proposed that the vertebrate genome evolved through several rounds of genome-wide duplications (polyploidizations). Despite rapid advances in genetics, including sequencing of the complete genomes of several divergent species, this hypothesis has not been tested rigorously and is still a matter of debate. If polyploidizations occurred during chordate evolution, there should be a network of paralogous regions in the present-day jawed vertebrate (Gnathostomata) genomes. Here we present an investigation of the major histocompatibility complex (MHC) paralogous regions, which we accomplished by characterizing the corresponding region in amphioxus by identifying nine anchor genes and sequencing both the anchor genes and the regions that flank them (a total of 400 kb). Phylogenetic analysis of 31 genes (including the anchor genes) in these regions shows that duplications occurred after the divergence of cephalochordates and vertebrates but before the Gnathostomata radiation. The distribution of human and amphioxus orthologs in their respective genomes and the relationship between these distributions support the en bloc duplication events. Our analysis represents the first step towards demonstrating that the human ancestral genome has undergone polyploidization. Moreover, reconstruction of the pre-duplicated region indicates that one of the duplicated regions retains the ancestral organization.

Comment in

[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Nature Publishing Group
Loading ...
Support Center