Send to

Choose Destination
Cell Death Differ. 2002 Apr;9(4):439-47.

Death effector domain-containing proteins DEDD and FLAME-3 form nuclear complexes with the TFIIIC102 subunit of human transcription factor IIIC.

Author information

Center for Apoptosis Research, Kimmel Cancer Institute, Thomas Jefferson University, Philadelphia, PA 19107, USA.


Death effector domain-containing proteins are involved in important cellular processes such as death-receptor induced apoptosis, NF-kappaB activation and ERK activation. Here we report the identification of a novel nuclear DED-containing protein, FLAME-3. FLAME-3 shares significant sequence (46.6% identical) and structural homology to another DED-containing protein, DEDD. FLAME-3 interacts with DEDD and c-FLIP (FLAME-1) but not with the other DED-containing proteins FADD, caspase-8 or caspase-10. FLAME-3 translocates to, and sequesters c-FLIP in the nucleus upon overexpression in human cell lines. Using the yeast two-hybrid system to identify DEDD-interacting proteins, the TFIIIC102 subunit of human transcription factor TFIIIC was identified as a DEDD- and FLAME-3-specific interacting protein. Co-expression of either DEDD or FLAME-3 with hTFIIIC102 in MCF-7 cells induces the translocation from the cytoplasm and sequestration of hTFIIIC102 in the nucleus, indicating that DEDD and FLAME-3 form strong heterocomplexes with hTFIIIC102 and might be important regulators of the activity of the hTFIIIC transcriptional complex. Consistent with this, overexpression of DEDD or FLAME-3 in 293 cells inhibited the expression of a luciferase-reporter gene under the control of the NF-kappaB promoter. Our data provide the first direct evidence for the involvement of DED-containing proteins in the regulation of components of the general transcription machinery in the nucleus.

[Indexed for MEDLINE]
Free full text

Supplemental Content

Full text links

Icon for Nature Publishing Group
Loading ...
Support Center