Format

Send to

Choose Destination
See comment in PubMed Commons below
Q Rev Biol. 2002 Mar;77(1):17-32.

Molecular mechanisms underlying the breakdown of gametophytic self-incompatibility.

Author information

  • 1Department of Biology, Colby College, Waterville, Maine 04901, USA. jstone@colby.edu

Abstract

The breakdown of self-incompatibility has occurred repeatedly throughout the evolution of flowering plants and has profound impacts on the genetic structure of populations. Recent advances in understanding of the molecular basis of self-incompatibility have provided insights into the mechanisms of its loss in natural populations, especially in the tomato family, the Solanaceae. In the Solanaceae, the gene that controls self-incompatibility in the style codes for a ribonuclease that causes the degradation of RNA in pollen tubes bearing an allele at the S-locus that matches either of the two alleles held by the maternal plant. The pollen component of the S-locus has yet to be identified. Loss of self-incompatibility can be attributed to three types of causes: duplication of the S-locus, mutations that cause loss of S-RNase activity, and mutations that do not cause loss of S-RNase activity. Duplication of the S-locus has been well studied in radiation-induced mutants but may be a relatively rare cause of the breakdown of self-incompatibility in nature. Point mutations within the S-locus that disrupt the production of S-RNase have been documented in natural populations. There are also a number of mutants in which S-RNase production is unimpaired, yet self-incompatibility is disrupted. The identity and function of these mutations is not well understood. Careful work on a handful of model organisms will enable population biologists to better understand the breakdown of self-incompatibility in nature.

PMID:
11963459
[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Loading ...
    Support Center