Send to

Choose Destination
See comment in PubMed Commons below
Nature. 2002 Apr 18;416(6882):713-6.

Electrical detection of spin precession in a metallic mesoscopic spin valve.

Author information

Department of Applied Physics and Materials Science Center, University of Groningen, The Netherlands.


To study and control the behaviour of the spins of electrons that are moving through a metal or semiconductor is an outstanding challenge in the field of 'spintronics', where possibilities for new electronic applications based on the spin degree of freedom are currently being explored. Recently, electrical control of spin coherence and coherent spin precession during transport was studied by optical techniques in semiconductors. Here we report controlled spin precession of electrically injected and detected electrons in a diffusive metallic conductor, using tunnel barriers in combination with metallic ferromagnetic electrodes as spin injector and detector. The output voltage of our device is sensitive to the spin degree of freedom only, and its sign can be switched from positive to negative, depending on the relative magnetization of the ferromagnetic electrodes. We show that the spin direction can be controlled by inducing a coherent spin precession caused by an applied perpendicular magnetic field. By inducing an average precession angle of 180 degrees, we are able to reverse the sign of the output voltage.

PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Nature Publishing Group
    Loading ...
    Support Center