Send to

Choose Destination

Energy metabolism of fish brain.

Author information

Laboratorio de FisioloxĂ­a Animal, Facultade de Ciencias, Universidade de Vigo, E-36200, Vigo, Spain.


This review focuses on recent research on the metabolic function of fish brain. Fish brain is isolated from the systemic circulation by a blood-brain barrier that allows the transport of glucose, monocarboxylates and amino acids. The limited information available in fishes suggests that oxidation of exogenous glucose and oxidative phosphorylation provide most of the ATP required for brain function in teleosts, whereas oxidation of ketones and amino acids occurs preferentially in elasmobranchs. In several agnathans and benthic teleosts brain glycogen levels rather than exogenous glucose may be the proximate glucose source for oxidation. In situations when glucose is in limited supply, teleost brains utilize other fuels such as lactate or ketones. Information on use of lipids and amino acids as fuels in fish brain is scarce. The main pathways of brain energy metabolism are changed by several effectors. Thus, several parameters of brain energy metabolism have been demonstrated to change post-prandially in teleostean fishes. The absence of food in teleosts elicits profound changes in brain energy metabolism (increased glycogenolysis and use of ketones) in a way similar to that demonstrated in mammals though delayed in time. Environmental factors induce changes in brain energy parameters in teleosts such as the enhancement of glycogenolysis elicited by pollutants, increased capacity for anaerobic glycolysis under hypoxia/anoxia or changes in substrate utilization elicited by adaptation to cold. Furthermore, several studies demonstrate effects of melatonin, insulin, glucagon, GLP-1, cortisol or catecholamines on energy parameters of teleost brain, although in most cases the results are quite preliminary being difficult to relate the effects of those hormones to physiological situations. The few studies performed with the different cell types available in the nervous system of fish allow us to hypothesize few functional relationships among those cells. Future research perspectives are also outlined.

[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Elsevier Science
Loading ...
Support Center