Send to

Choose Destination
Free Radic Biol Med. 2002 Mar 15;32(6):503-11.

Mechanism of vitamin E inhibition of cyclooxygenase activity in macrophages from old mice: role of peroxynitrite.

Author information

Nutritional Immunology Laboratory, Jean Mayer USDA Human Nutrition Research Center on Aging at Tufts University, 711 Washington Street, Boston, MA 02111, USA.


Vitamin E inhibits cyclooxygenase activity in macrophages from old mice by reducing peroxynitrite production. PGE(2) is a proinflammatory mediator that has been linked to a variety of age-associated diseases such as cancer, arthritis, and cardiovascular disease. Furthermore in the aged, increased cyclooxygenase (COX)-2-mediated PGE(2) production contributes to decline in T-cell-mediated function. Previously we reported that increased macrophage PGE(2) production in the aged is due to higher COX-2 activity and that supplementation with vitamin E significantly reduced the age-associated increase in macrophage PGE(2) production posttranslationally without changing COX-2 expression. Peroxynitrite, a product of nitric oxide (NO) and superoxide (O(-)(2)), increases the activity of COX without affecting its expression. Thus, we investigated if vitamin E inhibits COX activity through decreasing peroxynitrite formation. Macrophages from old mice had higher PGE(2) levels, COX activity, and NO levels than those from young mice, all of which were significantly reduced by vitamin E. When added individually, inhibitors of NO and O(-)(2) did not significantly reduce COX activity; however, when the inhibitors were combined, COX activity was significantly reduced in macrophages from old mice fed 30 ppm vitamin E. Increasing NO levels alone using SNAP or O(-)(2) levels, using X/XO, had no effect; however, increasing peroxynitrite levels using Sin-1 or X/XO + SNAP significantly increased COX activity in macrophages from old mice fed 500, but not those fed 30 ppm vitamin E. These data strongly suggest that peroxynitrite plays an important role in the vitamin E-induced inhibition of COX activity. These findings have important implications for designing interventions to reverse and/or delay age-associated dysregulation of immune and inflammatory responses and diseases associated with them.

[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Elsevier Science
Loading ...
Support Center