Format

Send to

Choose Destination
See comment in PubMed Commons below
Proc Biol Sci. 2002 Apr 22;269(1493):861-5.

Delayed prezygotic isolating mechanisms: evolution with a twist.

Author information

1
Department of Animal Ecology, Evolutionary Biology Centre, Uppsala University, Norbyvägen 18D, SE-752 36 Uppsala, Sweden. jrstone@is.dal.ca

Abstract

Assortative mating characterizes the situation wherein reproducing individuals pair according to similarity. Usually, the impetus for this bias is attributed to some type of mate choice conferring benefits (e.g., increased fitness or genetic compatibility) and, thereby, promoting speciation and phenotypic evolution. We investigate, by computer simulation of an evolving deme-structured snail population, the ramifications ensuing from passive assortative mating wherein couples exhibiting opposite shell coil direction phenotypes experience a physical constraint on mating success: putative mating partners inhabiting stout dextral and sinistral shells are unable to exchange sperm. Because shell coil chirality genotype is encoded at a single locus by shell coil alleles that are inherited maternally, snails containing sinistral alleles can present the typical dextral phenotype. Consequently, the incidence of a sinistral allele in as few as one snail can be manifested as prezygotic reproductive isolation within a deme in a subsequent generation. However, because the efficacy of achieving this type of prezygotic reproductive isolation is affected by shell form, the likelihood and product of single-gene speciation should be determined by deme interaction (migration) and composition (morphological distribution). We test this hypothesis and show how stochastic migration interacts with passive assortative mating yielding morphologically induced prezygotic reproductive isolation to produce new species phenotypes. The results show that demes can achieve rapid macroscopic phenotypic transformation and indicate that sympatric speciation might be more plausible than naturalists recognize conventionally.

PMID:
11958719
PMCID:
PMC1690955
DOI:
10.1098/rspb.2001.1934
[Indexed for MEDLINE]
Free PMC Article
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire Icon for PubMed Central
    Loading ...
    Support Center