Send to

Choose Destination
See comment in PubMed Commons below
J Biol Chem. 2002 Jun 28;277(26):23287-93. Epub 2002 Apr 15.

The C66W mutation in the deafness dystonia peptide 1 (DDP1) affects the formation of functional DDP1.TIM13 complexes in the mitochondrial intermembrane space.

Author information

Institut für Klinische Chemie, Molekulare Diagnostik und Mitochondriale Genetik, Institut für Diabetesforschung und Metabolic Disease Center München-Schwabing, Akademisches Lehrkrankenhaus München-Schwabing, Koelner Platz 1, München 80804, Germany.


Mohr-Tranebjaerg syndrome is a progressive, neurodegenerative disorder caused by loss-of-function mutations in the DDP1/TIMM8A gene. DDP1 belongs to a family of evolutionary conserved proteins that are organized in hetero-oligomeric complexes in the mitochondrial intermembrane space. They mediate the import and insertion of hydrophobic membrane proteins into the mitochondrial inner membrane. All of them share a conserved Cys(4) metal binding site proposed to be required for the formation of zinc fingers. So far, the only missense mutation known to cause a full-blown clinical phenotype is a C66W exchange directly affecting this Cys(4) motif. Here, we show that the mutant human protein is efficiently imported into mitochondria and sorted into the intermembrane space. In contrast to wild-type DDP1, it does not complement the function of its yeast homologue Tim8. The C66W mutation impairs binding of Zn(2+) ions via the Cys(4) motif. As a consequence, the mutated DDP1 is incorrectly folded and loses its ability to assemble into a hetero-hexameric 70-kDa complex with its cognate partner protein human Tim13. Thus, an assembly defect of DDP1 is the molecular basis of Mohr-Tranebjaerg syndrome in patients carrying the C66W mutation.

[Indexed for MEDLINE]
Free full text
PubMed Commons home

PubMed Commons


    Supplemental Content

    Full text links

    Icon for HighWire
    Loading ...
    Support Center