Send to

Choose Destination
See comment in PubMed Commons below
J Exp Biol. 2002 May;205(Pt 9):1315-38.

Basic limb kinematics of small therian mammals.

Author information

Institut für Spezielle Zoologie und Evolutionsbiologie, Friedrich-Schiller-Universität, Jena, Erbertstrasse 1, D-07743 Jena, Germany.


A comparative study of quantitative kinematic data of fore- and hindlimb movements of eight different mammalian species leads to the recognition of basic principles in the locomotion of small therians. The description of kinematics comprises fore- and hindlimb movements as well as sagittal spine movements including displacement patterns of limb segments, their contribution to step length, and joint movements. The comparison of the contributions of different segments to step length clearly shows the proximal parts (scapula, femur) to produce more than half of the propulsive movement of the whole limb at symmetrical gaits. Basically, a three-segmented limb with zigzag configuration of segments is mainly displaced at the scapular pivot or hip joint, both of which have the same vertical distance to the ground. Two segments operate in matched motion during retraction of the limb. While kinematic parameters of forelimbs are independent of speed and gait (with the scapula as the dominant element), fundamental changes occur in hindlimb kinematics with the change from symmetrical to in-phase gaits. Forward motion of the hindlimbs is now mainly due to sagittal lumbar spine movements contributing to half of the step length. Kinematics of small therian mammals are independent of their systematic position, their natural habitat, and also of specific anatomical dispositions (e.g. reduction of fingers, toes, or clavicle). In contrast, the possession of a tail influences 'pelvic movements'.

[Indexed for MEDLINE]
Free full text
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire
    Loading ...
    Support Center