Format

Send to

Choose Destination
See comment in PubMed Commons below
Endocr Rev. 2002 Apr;23(2):258-75.

The epithelial Na+ channel: cell surface insertion and retrieval in Na+ homeostasis and hypertension.

Author information

1
Department of Internal Medicine, University of Iowa College of Medicine, Iowa City, 52422. psnyder@blue.weeg.uiowa.edu

Abstract

The epithelial Na+ channel (ENaC) forms the pathway for Na+ absorption in the kidney collecting duct and other epithelia. Dominant gain-of-function mutations cause Liddle's syndrome, an inherited form of hypertension resulting from excessive renal Na+ absorption. Conversely, loss-of-function mutations cause pseudohypoaldosteronism type I, a disorder of salt wasting and hypotension. Thus, ENaC has a critical role in the maintenance of Na+ homeostasis and blood pressure control. Altered Na+ absorption in the lung may also contribute to the pathogenesis of cystic fibrosis. Epithelial Na+ absorption is regulated in large part by mechanisms that control the expression of ENaC at the cell surface. Nedd4, a ubiquitin protein ligase, binds to ENaC and targets the channel for endocytosis and degradation. Liddle's syndrome mutations disrupt the interaction between ENaC and Nedd4, resulting in an increase in the number of ENaC channels at the cell surface. Aldosterone and vasopressin also regulate Na+ absorption to defend against hypotension and hypovolemia. Both hormones increase the expression of ENaC at the cell surface. The goal of this review is to summarize recent data on the regulation of ENaC expression at the cell surface.

PMID:
11943747
DOI:
10.1210/edrv.23.2.0458
[Indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Silverchair Information Systems
    Loading ...
    Support Center