Method optimization for the determination of carbonyl compounds in disinfected water by DNPH derivatization and LC-ESI-MS-MS

Anal Bioanal Chem. 2002 Mar;372(5-6):615-21. doi: 10.1007/s00216-002-1233-y. Epub 2002 Feb 19.

Abstract

A method has been developed for quantitative determination of carbonyl disinfection by-products (DBP) from aqueous samples by derivatization with 2,4-dinitrophenylhydrazine combined with high-performance liquid chromatography (HPLC) and electrospray ionization (ESI) tandem mass spectrometry (MS-MS). The effect of excess of derivatization reagent and derivatization time, the effect of buffer and dry-gas temperature in the ESI process, and the effect of focus potential and collision energy in MS measurement are shown. Major fragment ions for compound identification on the basis of collision-induced dissociation (CID) mass spectra (MS) are given, as are common fragments for screening analyses by MS experiments such as the use of precursor ion scans. Detection limits in the microg x L(-1) range could be achieved by selected ion monitoring measurements without sample preconcentration. Solid-phase extraction improved the sensitivity by a factor of 25 to 250. The applicability of the method is illustrated by DBP analyses of samples from outdoor swimming pools after chlorination. Several carbonyl compounds, e.g. aldehydes, ketones, hydroxybenzaldehyde, and dicarbonyl compounds were identified.