Format

Send to

Choose Destination
See comment in PubMed Commons below
J Immunol. 2002 Apr 15;168(8):4025-33.

Role of p38 mitogen-activated protein kinase phosphorylation and Fas-Fas ligand interaction in morphine-induced macrophage apoptosis.

Author information

1
Immunology and Inflammation Center, North Shore-Long Island Jewish Research Institute and Division of Kidney Diseases and Hypertension, Long Island Jewish Medical Center, New Hyde Park, NY 11040, USA. singhal@lij.edu

Abstract

In this study, we evaluated the molecular mechanisms involved in morphine-induced macrophage apoptosis. Both morphine and TGF-beta promoted P38 mitogen-activated protein kinase (MAPK) phosphorylation, and this phosphorylation was inhibited by SB 202190 as well as by SB 203580. Anti-TGF-beta Ab as well as naltrexone (an opiate receptor antagonist) inhibited morphine-induced macrophage P38 MAPK phosphorylation. Anti-TGF-beta Ab also attenuated morphine-induced p53 as well as inducible NO synthase expression; in contrast, N(G)-nitro-L-arginine methyl ester, an inhibitor of NO synthase, inhibited morphine-induced P38 MAPK phosphorylation and Bax expression. Morphine also enhanced the expression of both Fas and Fas ligand (FasL), whereas anti-FasL Ab prevented morphine-induced macrophage apoptosis. Moreover, naltrexone inhibited morphine-induced FasL expression. In addition, macrophages either deficient in FasL or lacking p53 showed resistance to the effect of morphine. Inhibitors of both caspase-8 and caspase-9 partially prevented the apoptotic effect of morphine on macrophages. In addition, caspase-3 inhibitor prevented morphine-induced macrophage apoptosis. These findings suggest that morphine-induced macrophage apoptosis proceeds through opiate receptors via P38 MAPK phosphorylation. Both TGF-beta and inducible NO synthase play an important role in morphine-induced downstream signaling, which seems to activate proteins involved in both extrinsic (Fas and FasL) and intrinsic (p53 and Bax) cell death pathways.

PMID:
11937560
[Indexed for MEDLINE]
Free full text

Publication type, MeSH terms, Substances, Grant support

Publication type

MeSH terms

Substances

Grant support

PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire
    Loading ...
    Support Center