Format

Send to

Choose Destination
See comment in PubMed Commons below
J Biol Chem. 2002 Jun 21;277(25):22806-13. Epub 2002 Apr 5.

Scanning mutagenesis of a Janus-faced atracotoxin reveals a bipartite surface patch that is essential for neurotoxic function.

Author information

1
Department of Biochemistry, University of Connecticut Health Center, Farmington, Connecticut 06032, USA.

Abstract

The Janus-faced atracotoxins (J-ACTXs) are a family of insect-specific excitatory neurotoxins isolated from the venom of Australian funnel web spiders. In addition to a strikingly asymmetric distribution of charged residues, from which their name is derived, these toxins contain an extremely rare vicinal disulfide bond. To shed light on the mechanism of action of these toxins and to enhance their utility as lead compounds for insecticide development, we developed a recombinant expression system for the prototypic family member, J-ACTX-Hv1c, and mapped the key functional residues using site-directed mutagenesis. An alanine scan using a panel of 24 mutants provided the first complete map of the bioactive surface of a spider toxin and revealed that the entire J-ACTX-Hv1c pharmacophore is restricted to seven residues that form a bipartite surface patch on one face of the toxin. However, the primary pharmacophore, or hot spot, is formed by just five residues (Arg(8), Pro(9), Tyr(31), and the Cys(13)-Cys(14) vicinal disulfide). The Arg(8)-Tyr(31) diad in J-ACTX-Hv1c superimposes closely on the Lys-(Tyr/Phe) diad that is spatially conserved across a range of structurally dissimilar K(+) channel blockers, which leads us to speculate that the J-ACTXs might target an invertebrate K(+) channel.

PMID:
11937509
DOI:
10.1074/jbc.M202297200
[Indexed for MEDLINE]
Free full text
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire
    Loading ...
    Support Center