Format

Send to

Choose Destination
See comment in PubMed Commons below
J Opt Soc Am A Opt Image Sci Vis. 2002 Apr;19(4):702-15.

Two-dimensionally-periodic diffractive optical elements: limitations of scalar analysis.

Author information

  • 1School of Electrical and Computer Engineering and Microelectronics Research Center, Georgia Institute of Technology, Atlanta 30332, USA. elias.glytsis@ece.gatech.edu

Abstract

The range of validity of the scalar diffraction analysis is quantified for the case of two-dimensionally-periodic diffractive optical elements (crossed gratings). Three canonical classes of two-dimensionally-periodic grating structures are analyzed by using the rigorous coupled-wave analysis as well as the scalar diffraction analysis. In all cases the scalar-analysis diffraction efficiencies are compared with the exact diffraction efficiencies. The error in using the scalar analysis is then determined as a function of the grating-period(s)-to-wavelength ratio(s), the minimum feature size, the grating depth, the refractive index of the grating, the incident polarization, and the number of phase levels. The three classes of two-dimensional (2-D) unit cells are as follows: (1) a rectangular pillar, (2) an elliptical pillar, and (3) an arbitrarily pixellated multilevel 2-D unit cell that is representative of more complicated diffractive optical elements such as computer-generated holograms. In all cases a normally incident electromagnetic plane wave is considered. It is shown that the error of the scalar diffraction analysis in the case of two-dimensionally-periodic diffractive optical elements is greater than that for the corresponding one-dimensionally-periodic counterparts. In addition, the accuracy of the scalar diffraction analysis degrades with increasing refractive index, grating thickness, and asymmetry of the 2-D unit cell and with decreasing grating-period-to-wavelength ratio and feature size.

PMID:
11934163
[PubMed]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Optical Society of America
    Loading ...
    Write to the Help Desk