Send to

Choose Destination
J Agric Food Chem. 2002 Apr 10;50(8):2365-71.

Influence of lipid fraction, emulsifier fraction, and mean particle diameter of oil-in-water emulsions on the release of 20 aroma compounds.

Author information

Department of Food Science, Food Technology and Nutrition, University College Cork, Western Road, Cork, Ireland.


The influence of compositional and structural properties of oil-in-water emulsions on aroma release was examined under mouth conditions. The lipid (0.40 and 0.65) and emulsifier fractions (0.007, 0.010, and 0.014) were varied, as well as the mean particle diameter of the dispersed phase (0.60, 0.73, 0.85, and 1.10 microm). Aroma compounds were isolated in a model mouth system and quantified by gas chromatography-mass spectrometry. Studies were carried out to separate effects on the thermodynamic and the kinetic components of aroma release using equilibrium headspace analysis to distinguish the thermodynamic component. The lipid phase of the emulsions was composed of sunflower oil and the emulsifier phase was Tween 20. The release of 20 aroma compounds was evaluated; the compounds included alcohols (1-propanol, 1-butanol, 3-methyl-1-butanol, 2-pentanol, 1-hexanol, and 2-nonanol), ketones (diacetyl, 2-butanone, 2-heptanone, 2-octanone, and 2-decanone), esters (ethyl acetate, propyl acetate, butyl acetate, and ethyl butyrate), aldehydes (hexanal, heptanal, and octanal), a terpene (alpha-pinene), and a sulfur compound (dimethyl sulfide). Decrease in lipid fraction and emulsifier fraction, as well as increase in particle diameter, increased aroma release under mouth conditions. Differences between groups of compounds and between compounds of homologous series with varying chain lengths were found. Changes in particle diameter had a considerable effect on the thermodynamic component of aroma release, whereas hardly any influence of the lipid fraction and emulsifier fraction was observed. Lipid fraction, emulsifier fraction, and particle diameter affected the kinetic component of aroma release, which could partially be attributed to changes in viscosity.

[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for American Chemical Society
Loading ...
Support Center