Send to

Choose Destination
See comment in PubMed Commons below
J Biol Chem. 2002 Jun 7;277(23):20336-42. Epub 2002 Mar 26.

Reversible inactivation of the tumor suppressor PTEN by H2O2.

Author information

  • 1Laboratory of Cell Signaling, NHLBI, National Institutes of Health, Bethesda, Maryland 20892-8015, USA.


The tumor suppressor PTEN regulates cell migration, growth, and survival by removing the 3'-phosphate of phosphoinositides. Exposure of purified PTEN or of cells to H(2)O(2) resulted in inactivation of PTEN in a time- and H(2)O(2) concentration-dependent manner. Analysis of various cysteine mutants, including mass spectrometry of tryptic peptides, indicated that the essential Cys(124) residue in the active site of PTEN specifically forms a disulfide with Cys(71) during oxidation by H(2)O(2). The reduction of H(2)O(2)-oxidized PTEN in cells appears to be mediated predominantly by thioredoxin. Thus, thioredoxin was more efficient than glutaredoxin, glutathione, or a 14-kDa thioredoxin-like protein with regard to the reduction of oxidized PTEN in vitro. Thioredoxin co-immunoprecipitated with PTEN from cell lysates; and incubation of cells with 2,4-dinitro-1-chlorobenzene (an inhibitor of thioredoxin reductase) delayed the reduction of oxidized PTEN, whereas incubation with buthioninesulfoximine (an inhibitor of glutathione biosynthesis) did not. These results suggest that the reversible inactivation of PTEN by H(2)O(2) might be important for the accumulation of 3'-phosphorylated phosphoinositides and that the uncontrolled generation of H(2)O(2) associated with certain pathological conditions might contribute to cell proliferation by inhibiting PTEN function.

[PubMed - indexed for MEDLINE]
Free full text
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire
    Loading ...
    Support Center