Approximate derivative calculated by using continuous wavelet transform

J Chem Inf Comput Sci. 2002 Mar-Apr;42(2):274-83. doi: 10.1021/ci010333v.

Abstract

A novel method of calculating approximate derivative of signals in analytical chemistry by using the continuous wavelet transform (CWT) is proposed. As compared with numerical differentiation, FT method and DWT method, fast calculation, and simple mathematical operation are remarkable advantages of CWT method. The signal-to-noise ratio (SNR) of approximate derivative of signals calculated by CWT method is easily enhanced only through appropriately adjusting the dilation, even in the case of very low SNR. Therefore, CWT method is a powerful tool for performing the approximate derivative calculation of signals in analytical chemistry. Additionally, the approximate second derivative evaluated via CWT method can be used to determine the peak potentials of the overlapping square wave voltammogram (SWV) of Cd(II) and In(III), and the results are very satisfactory.