Send to

Choose Destination
Biol Reprod. 2002 Apr;66(4):1024-32.

Chronic cyclophosphamide treatment alters the expression of stress response genes in rat male germ cells.

Author information

Department of Pharmacology and Therapeutics, McGill University, 3655 Promenade Sir-William-Osler, Montreal, Quebec, Canada H3G 1Y6.


Increases in the survival rate of men treated with chemotherapeutic drugs and their desire to have children precipitate concerns about the effects of these drugs on germ cells. Azoospermia, oligospermia, and infertility are common outcomes resulting from treatment with cyclophosphamide, an alkylating agent. Exposure of male rats to cyclophosphamide results in dose-dependent and time-specific adverse effects on progeny outcome. Elucidation of the effects of chronic low-dose cyclophosphamide treatment on the expression of stress response genes in male germ cells may provide insight into the mechanisms underlying such adverse effects. Male rats were gavaged with saline or cyclophosphamide (6 mg/kg) for 4-5 wk; pachytene spermatocytes, round spermatids, and elongating spermatids were isolated; RNA was extracted and probed on cDNA arrays containing 216 cDNAs. After saline treatment, 125 stress response genes were expressed in pachytene spermatocytes (57% of genes studied), 122 in round spermatids (56%), and 83 in elongating spermatids (38%). Cyclophosphamide treatment reduced the number of genes detected in all germ cell types. The predominant effect of chronic cyclophosphamide exposure was to decrease the expression level of genes in pachytene spermatocytes (34% of genes studied), round spermatids (29%), and elongating spermatids (4%). In elongating spermatids only, drug treatment increased the expression of 8% of the genes studied. The expression profiles of genes involved in DNA repair, posttranslational modification, and antioxidant defense in male germ cells were altered by chronic cyclophosphamide treatment. We hypothesize that the effects of cyclophosphamide exposure on germ cell gene expression during spermatogenesis may have adverse consequences on male fertility and progeny outcome.

[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Silverchair Information Systems
Loading ...
Support Center