Format

Send to

Choose Destination
Genetics. 2002 Mar;160(3):823-32.

Predicting evolutionary potential: in vitro evolution accurately reproduces natural evolution of the tem beta-lactamase.

Author information

1
Biology Department, University of Rochester, Rochester, New York 14627-0211, USA.

Erratum in

  • Genetics. 2002 Jul;161(3):1355..

Abstract

To evaluate the validity of our in vitro evolution method as a model for natural evolutionary processes, the TEM-1 beta-lactamase gene was evolved in vitro and was selected for increased resistance to cefotaxime, cefuroxime, ceftazadime, and aztreonam, i.e., the "extended-spectrum" phenotype. The amino acid substitutions recovered in 10 independent in vitro evolvants were compared with the amino acid substitutions in the naturally occurring extended-spectrum TEM alleles. Of the nine substitutions that have arisen multiple times in naturally occurring extended-spectrum TEM alleles, seven were recovered multiple times in vitro. We take this result as evidence that our in vitro evolution technique accurately mimics natural evolution and can therefore be used to predict the results of natural evolutionary processes. Additionally, our results predict that a phenotype not yet observed among TEM beta-lactamases in nature-resistance to cefepime-is likely to arise in nature.

PMID:
11901104
PMCID:
PMC1462021
[Indexed for MEDLINE]
Free PMC Article

Supplemental Content

Full text links

Icon for HighWire Icon for PubMed Central
Loading ...
Support Center