Send to

Choose Destination
J Heart Lung Transplant. 2002 Mar;21(3):366-73.

Molecular mechanisms of reduced sarcoplasmic reticulum Ca(2+) uptake in human failing left ventricular myocardium.

Author information

Department of Medicine, Division of Cardiovascular Medicine, Henry Ford Heart and Vascular Institute, Detroit, Michigan, USA



Human failing heart due to idiopathic dilated cardiomyopathy is associated with decreased sarcoplasmic reticulum Ca(2+) uptake. However, it is unknown as to which mechanism leads to this abnormality.


Immunodetectable sarcoplasmic reticulum proteins (phospholamban [PLB], phosphorylated PLB at serine-16 or threonine-17, calsequestrin and Ca(2+)-ATPase levels), the activities of Ca(2+)-calmodulin-dependent protein kinase and protein phosphatase and Ca(2+) uptake at varying Ca(2+) concentrations were determined in left ventricular specimens from the same 7 failing hearts (ejection fraction 20 +/- 2%) due to idiopathic dilated cardiomyopathy and 5 non-failing explanted control donor hearts.


In failing hearts, compared with control donors, decreased maximal velocity and affinity of Ca(2+) uptake for Ca(2+) were found to be associated with reduced expression levels of Ca(2+)-adenosine triphosphatase (ATPase), PLB and phosphorylated PLB at serine-16, but not of calsequestrin and phosphorylated PLB at threonine-17. In contrast, protein phosphatase activity increased significantly and the activity and protein expression level of the delta isoform of Ca(2+)-calmodulin-dependent protein kinase remained unchanged in failing hearts compared with control donors.


The impaired maximal velocity of sarcoplasmic reticulum Ca(2+) uptake may be due in part to reduced protein expression level of Ca(2+)-ATPase, whereas the reduced affinity may be due in part to the reduced ratio of Ca(2+)-ATPase to PLB and reduced PLB phosphorylation at serine-16 in failing hearts. The latter abnormality may be due in part to increased protein phosphatase activity. These results suggest that selective enhancement of Ca(2+) uptake into the sarcoplasmic reticulum by pharmaceutical agents, or by molecular tools that inhibit phosphatase activity, would be a valuable therapeutic approach for treating, or at least retarding, the process of heart failure.

[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Elsevier Science
Loading ...
Support Center