Send to

Choose Destination
See comment in PubMed Commons below
J Cereb Blood Flow Metab. 2002 Mar;22(3):342-52.

Comparison of the effects of cyclosporin a on the metabolism of perfused rat brain slices during normoxia and hypoxia.

Author information

Department of Biology and Chemistry, University of Bremen, Bremen, Germany.


The authors evaluated and compared the metabolic effects of cyclosporin A in the rat brain during normoxia and hypoxia/reperfusion. Ex vivo 31P magnetic resonance spectroscopy experiments based on perfused rat brain slices showed that under normoxic conditions, 500 microg/L cyclosporin A significantly reduced mitochondrial energy metabolism (nucleotide triphosphate, 83 +/- 9% of controls; phosphocreatine, 69 +/- 9%) by inhibition of the Krebs cycle (glutamate, 77 +/- 5%) and oxidative phosphorylation (NAD+, 65 +/- 14%) associated with an increased generation of reactive oxygen species (285 +/- 78% of control). However, the same cyclosporin A concentration (500 microg/L) was found to be the most efficient concentration to inhibit the hypoxia-induced mitochondrial release of Ca2+ in primary rat hippocampal cells with cytosolic Ca2+ concentrations not significantly different from normoxic controls. Addition of 500 microg/L cyclosporin A to the perfusion medium protected high-energy phosphate metabolism (nucleotide triphosphate, 11 +/- 15% of control vs. 35 +/- 9% with 500 microg/L cyclosporin A) and the intracellular pH (6.2 +/- 0.1 control vs. 6.6 +/- 0.1 with cyclosporin A) in rat brain slices during 30 minutes of hypoxia. Results indicate that cyclosporin A simultaneously decreases and protects cell glucose and energy metabolism. Whether the overall effect was a reduction or protection of cell energy metabolism depended on the concentrations of both oxygen and cyclosporin A in the buffer solution.

[Indexed for MEDLINE]
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Atypon
    Loading ...
    Support Center